BeeBet(ビーベット)の評判は?ボーナス・サイトの特徴を徹底 ...

<ウェブサイト名>

<現在の時刻>

出典: 標準

International Affairs Students Current Students Alumni Faculty/Staff Careers--> TOHOKU UNIVERSITYCREATING GLOBAL EXCELLENCE Search 日本語 Contact Tohoku University --> About Facts & Figures Facilities Organization Chart History President's Message Top Global University Project Designated National University Global Network Promotional Videos Academics Undergraduate Graduate Courses in English Exchange Programs Summer Programs Double Degree Programs Academic Calendar Syllabus Admissions Undergraduate Admissions Graduate Admissions Fees and Expenses Financial Aid Research Feature Highlights Research Releases University Research News Research Institutes Visitor Research Center Research Profiles Academic Research Staff Campus Life International Support Office IT Services Facilities Dining & Shops Campus Bus Clubs & Circles News University News Research--> Arts & Culture Health & Sports Campus & Community Press Release--> International Visit Alumni Careers Events Exhibits Music Special Event Lecture Alumni--> Map & Directions Campus Maps & Bus--> Facilities Map--> TOHOKUUNIVERSITY About Academics Admissions Research Campus Life News Events International Affairs Students Current Students Alumni Faculty/Staff Promotional Videos Subscribe to our Newsletter Map & Directions Contact Jobs & Vacancies Emergency Information Site Map 日本語 Close Home Research News Hitachi and Tohoku University Develop Basic Technology of High Thermally-Durable All-Solid-State Lithium Ion Battery Research News Hitachi and Tohoku University Develop Basic Technology of High Thermally-Durable All-Solid-State Lithium Ion Battery 2015-11-30 Hitachi, Ltd. (TSE: 6501) and Tohoku University's Advanced Institute for Materials Research (AIMR) have developed a basic technology to reduce the internal resistance of the all-solid-state lithium ion battery (Li-ion battery) using a complex hydride*1 as a solid electrolyte. The reduction of internal resistance improves the charge-discharge performance of the all-solid-state Li-ion battery, resulting in the batteries (capacity: 2 mAh) successfully operating at temperatures as high as 150°C, with a discharge capacity of 90% of theoretical value*2. This technology is significant as it allows the thermally durable Li-ion battery to be used in a wider variety of applications, such as large-scale industrial machines with motors, and medical machines which need to be heated for autoclave sterilization. Since this technology does not require the cooling system common in conventional Li-ion batteries, it is expected to lead to further developments of compact battery systems and reduce overall costs. The high energy density Li-ion battery is already being used as power sources in applications such as portable devices (smartphones and tablets), electric vehicles and adjustor of the supply and demand of renewable energy. The conventional Li-ion battery consists of a separator, a positive electrode layer and a negative electrode layer (Fig.1 (a)). The battery is filled with organic electrolyte solution in which lithium ion conducts between the two electrode layers during the charge and discharge process. An issue of the conventional Li-ion battery, with the organic electrolyte solution, is thermal durability. The upper operating temperature is limited to around 60°C owing to volatility of the organic electrolyte solution. Consequently, it is difficult to use the conventional Li-ion battery in a high temperature environment without a cooling system. Therefore, the solid electrolyte with no volatility has been developed for the utilization of Li-ion battery in a high temperature environment. The lithium ion conductivity of solid electrolyte, however, is lower than that of the organic electrolyte solution, and the internal resistance of all-solid-state Li-ion battery should be reduced for its commercialization. Prof. Shin-ichi Orimo's lab in AIMR and the Institute for Material Research at Tohoku University have been conducting research on LiBH4-based complex hydrides as novel and solid electrolytes. They have confirmed the fast lithium ion conductivity in the wide temperature range from room temperature to 150°C. Details of the technology developed are as below: Composite positive electrode layer to suppress the decomposition of active materials at interface*1 Adhesive layer for reducing the interface resistance between solid electrolyte and composite positive electrode layer *1 Interface: Boundary formed between different solid materials This research was part of a collaborative project between Hitachi and AIMR called "Collaborative Research for Next Generation Innovative Battery." The findings of this research were partially presented on November 13, 2015 at the 56th Battery Symposium, held in Aichi Prefecture. Links: Advanced Institute for Materials Research, Tohoku University For enquiries about this research: Shin-ichi OrimoAdvanced Institute for Materials Research (AIMR), Tohoku University Email: orimoimr.tohoku.ac.jp For public relations enquiries: Marie MinagawaPublic Relations & Outreach office, Advanced Institute for Materials Research, Tohoku University Tel +81 22 217 6146 Email: aimr-outreachgrp.tohoku.ac.jp Archives 2014&#24180; 2015&#24180; 2016&#24180; 2017&#24180; 2018&#24180; 2019&#24180; 2020&#24180; 2021&#24180; 2022&#24180; 2023&#24180; Page Top About Tohoku University Academics Admissions Research Campus Life News Events International Affairs Students Alumni Promotional Videos Subscribe to our Newsletter Map & Directions Contact Tohoku University Jobs & Vacancies Emergency Information Site Map Media Enquiries Parent & Family Support Public Facilities Contact Tohoku University

wbcプールc 偶数ローグ バロ名前変更 ウィンブルドンホームページ
Copyright ©BeeBet(ビーベット)の評判は?ボーナス・サイトの特徴を徹底 ... The Paper All rights reserved.