ユーロ2024組み合わせ

<ウェブサイト名>

<現在の時刻>

出典: 標準

Support Kyushu U 日本語 ENGLISH Prospective students Current students Companies & researchers Alumni Crisis Management News Events About Office of the President University Overview Kyushu U Connect Fast Facts Public Relations Featured Academics Schools & Centers The Global University Project Alumni Resources Donation Activities and Initiatives Future Plans University Facilities Academics Faculty of Arts and Science Schools Distinctive Education Programs Double Degree Programs Student Exchange Programs Short-term Study Programs The 3 Policies: Diploma, Curriculum, and Admissions Course Registration Academic Calendar Admissions Undergraduate Admissions Graduate Admissions Tuition, Fees & Scholarships Information for International Students Campus Life Facilities and Healthcare Extracurricular / Student-Led Activities Careers & Employment Procedures Contact Information for Consultations Research Research at Kyushu University Academic Staff Educational and Research Activities Database Research Activity Support Industry-University -Government Collaboration Support Research Centers and Projects Framework to Support Collaborated Research Research Integrity 日本語 ENGLISH News Topics Features Research Close-Up Notices Important Research Results Humanities & Social Sciences Art & Design Life & Health Math & Data Physics & Chemistry Materials Technology Environment & Sustainability Events Event Calendar Categories Public Seminar Lecture, etc. Exhibition Other Place Ito Campus Hakozaki Satellite Hospital Campus Chikushi Campus Ohashi Campus Beppu Campus Off Campus About Office of the President Message from the President Kyushu University VISION 2030 Biography Honorary Doctorates History of the Presidency Kyushu U Connect University Overview Organization Charter Presidential Selection Regulations and Policies History Future Plans Mid-Term Objectives and Plans Public Relations Publications Press Releases Promotional Videos University logomark List of Social Media Accounts Virtual Backgrounds Virtual Backgrounds (Archive) Featured Academics Campus Relocation Ceremony to Commemorate Completion of Ito Campus University Facilities Alumni Resources Alumni Associations Donation Donations to Schools, Graduate Schools, and Researchers, etc. Activities and Initiatives Promoting Diversity, Equity, and Inclusion QS-APPLE 2019 Response to the 2016 Kumamoto Earthquake Schools & Centers Research Institutes Centers for Common Education and Research Organizations and Offices Hospitals Libraries Museums Others Academics Faculty of Arts and Science Schools Educational and Research Course The 3 Policies Academic Calendar Course Registration Curriculum Registration / Syllabuses Distinctive Education Programs Program for Leading Graduate Schools Admissions Undergraduate Admissions Enrolling in Undergraduate School Applicants with Disabilities Graduate Admissions Applicants with Disabilities Enrolling as a Research Student Tuition, Fees, & Scholarships Tuition and Fees Enrollment Fee Exemption/Deferment and Tuition Fee Exemption for Newly-enrolled Students Scholarships Payment of tuition Tuition Fee Exemption, Enrollment Fee Exemption/Deferment Financial Aid Double Degree Programs Student Exchange Programs Campus Life Facilities and Healthcare Student Facilities Dormitories Healthcare Personal Accident Insurance for Students/ Liability Insurance Careers & Employment New Information How to use Job and Career Support System Career Consulting Job Hunting Support for International Students Recruitment of International Students Extracurricular / Student-Led Activities Procedures Certificates National Pension System for Students Contact Information for Consultations One-Stop Consultation Service Research Research at Kyushu University Humanities and Social Sciences Art and Design Life and Health Math and Data Physics and Chemistry Materials Technology Environment and Sustainability Research Close-Up Research Centers and Projects Next-Generation Fuel Cell Research Center (NEXT-FC) Research Activity Support On-campus Consultation Research Strategy Promotion Support for Research Funding and Grants Support for Other Research Activities Industry - University - Government Collaboration Support Technological Consultation Intellectual Property Management and Use Joint Research/Sponsored Research Comprehensive Collaboration Joint Research Department Research Integrity Framework to Support Collaborative Research International ・Prospective students ・Current students ・Companies & researchers ・Alumni ・Support Kyushu U Crisis Management ・Contact Us ・Visit ・Career ・Disclaimer & Copyright ・Privacy Policy ・Sitemap 研究成果 Research Results TOP News Research Results New multistep mechanism for nanostructure formation found in liquid crystals New multistep mechanism for nanostructure formation found in liquid crystals Combination of molecular simulation and AI technologies making advances toward development of highly functional materials 2021.10.25 Research ResultsPhysics & ChemistryMaterials Training of the AI and the simulation of the nanostructures of liquid crystals during cooling Researchers from Kyushu University and the National Institute of Advanced Industrial Science and Technology (AIST) have developed a novel analysis method that combines molecular simulation and artificial intelligence (AI) to observe the formation process of nanostructures in cooling liquid crystals. In doing so, they discovered a new three-step process of nanostructuring unexplainable by classical nucleation theory and also clarified its mechanism.  The team involved Senior Researcher Dr. Kazuaki Z. Takahashi and Principal Research Manager Dr. Takeshi Aoyagi of AIST and Professor Jun-ichi Fukuda of Kyushu University's Faculty of Science. We interact with most of the commodities in our daily lives—from plastics and alloys to processed foods—as solids. However, these substances are often originally processed as liquids that are carefully controlled and cooled into their solid state. These liquid states can be composed of different materials such as liquid crystals, solutions, polymers, and biomaterials and, depending on the cooling processes, form a wide variety of structural patterns that can significantly influence the properties of solid products. Therefore, understanding how the cooling process proceeds and how it can be controlled is vital in most scientific disciplines. In many cases, the formation of a solid during the cooling process is initiated by the formation of nanostructures, which can be explained by classical nucleation theory. However, this theory cannot quantitatively account for some important physical properties such as the rate of nanostructure formation. In an effort to accelerate the development of organic and polymeric functional materials through the fusion of computational science, process technology, and measurement technology, the New Energy and Industrial Technology Development Organization (NEDO), launched the "Ultra High-Throughput Design and Prototyping Technology for Ultra Advanced Materials Development Project." One of the goals of the project is to develop technologies that control material structures, paying particular attention to nanostructuring and focusing on the cooling process of liquid crystals and typical organic and polymeric functional materials. The research team explains that molecular simulations are promising as a technology to make possible the observation of previously unknown microscopic movement of individual molecules, the counting of nanostructures, and even the quantification of how structures increase. However, there are still many kinds of nanostructures that are difficult to observe using molecular simulations alone, and the combination of molecular simulations with other advanced technologies is being envisaged to overcome this difficulty. It has thus been highly desired to develop computational technologies that provide new analysis methods for the identification of nanostructures with high accuracy. In this study, the team applied AI technology to study structures obtained from molecular simulation during the cooling process and succeeded in extracting and observing the formation of nanostructures. What they found was that unlike in conventional classical nucleation theory—where nanostructures of various materials are formed through a one- to two-step process—liquid crystals would undergo a more complicated three-step process. The team explains that this analysis technique can be applied not only to liquid crystals but also to polymers, biomaterials, and many other materials, and they hope that it can lead to the creation of a wide range of new highly functional materials. ### For more information about this research, see “Multistep nucleation of anisotropic molecules,” Kazuaki Z. Takahashi, Takeshi Aoyagi, and Jun-ichi Fukuda, Nature Communications (2021). https://doi.org/10.1038/s41467-021-25586-4 Original press release can be found on the AIST website. This release is also available in Japanese. Research-related inquiries Jun-ichi Fukuda, ProfessorDepartment of Physics, Faculty of Science Contact information can also be found in the full release. Tweet Back to the list TOP News Research Results New multistep mechanism for nanostructure formation found in liquid crystals Research Results Humanities & Social Sciences Art & Design Life & Health Math & Data Physics & Chemistry Materials Technology Environment & Sustainability Year 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 九州大学Kyushu University744 Motooka Nishi-ku Fukuoka 819-0395 Contact Us | Visit Career Academics Disclaimer & Copyright Admissions News Privacy Policy Research Events Sitemap Campus Life About COPYRIGHT © KYUSHU UNIVERSITY. ALL RIGHTS RESERVED.

188bet88betloan valorantビットキャッシュ 188betlinkzokb ステークカジノでのスムーズな登録とログイン方法
Copyright ©ユーロ2024組み合わせ The Paper All rights reserved.